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ABSTRACT

It has been previously shown that the temporal integration of hyperbolic partial differ-

ential equations may , because of boundary conditions, lead to deterioration of accuracy of

the solution. A procedure for removal of this error in the linear case has been established

previously.

In the present paper we consider hyperbolic p.d.e's (linear and non-linear) whose bound-

ary treatment is done via the SAT-procedure. A methodology is present for recovery of the

full order of accuracy, and has been applied to the case of a 4th order explicit finite difference

schelne.
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1. Introduction

Currently there is a growing interest in long time integration for solving problems in areas

such a aero-acoustics, electro-magnetics, material-science and others. This necessitates, ([1]),

working with higher order (4th order accuracy and above) schemes. Often the methodology

of choice is to semi-discretize the equations by applying a high order (4th and above) spatial

difference operator and then advance temporally using single level multi-stage Runge-Kutta

integrators. This raises tile question of how to supply boundary values at the intermediate

stages of the R-K integrations. In the case of hyperbolic p.d.e's that means the imposition

of the time dependent conditions at the inflow boundary.

The conventional (and intuitively natural) way of imposing inflow boundary conditions

at the intermediate stages is to use tile "appropriate" value of the boundary data, g(t), at

each stage. Thus, for example, at a stage corresponding to t + (At/2), one would impose

g(t + Atl2).

In a previous paper ([2]), it was shown that the procedure described above, when ap-

plied to hyperbolic p.d.e's with time dependent b.c.'s, reduces the accuracy near the inflow

boundary to first order and thus the overall accuracy cannot exceed 0(Ax2). This conclusion

is independent of the order of accuracy of the spatial difference operator.

One way of avoiding the dilemma of what boundary values one should supply at the

intermediate stages, is to advance the R-K integration without imposing any intermediate

values, but rather obtain the intermediate boundary values from the numerical solution

operator, tIowever, this approach has the disadvantage of reducing substantially the stability

limit (e.g., the allowable time step is reduced by a factor 2 in the case of 4th order classical

R-K with a 4th order spatial derivative operator), hence rendering it less than attractive.

In ([2]) a general methodology was presented in the case of linear p.d.e.'s for the correct
t

imposition of the intermediate stage boundary values so that the scheme recovers its full

formal accuracy. This was expounded in detail for the case of the classic 4th order R-K

with a hyperbolic 4th order spatial difference operator. It was also shown there that in the

non-linear case (e.g. hyperbolic conservation laws) this methodology was applicable to R-K

integration up to 3rd order. For R-K . methods of 4th order and above we were not able to

extend the theoretical approach described in ([2]).

In this paper we address anew the issue of how to deal with the non-linear case. We

present a methodology for retaining the full accuracy even in the non-linear case. The

application of this methodology involved numerical determination of free parameters in con-

tradistinctsr numerical determination of free parameters in contradistinction to the linear

procedure described in ([2]). We find for example, that in the 4th order classical R-K integra-

tor with 4th order explicit spatial derivative operator, the full accuracy is retained without



any reduction in t heallowabletime step.

The new procedureis demonstratedfor hyperbolic problemswherethe boundary condi-
tions aresatisfied by usingthe SAT approach([3]. Tlle motivation for doing so is that the

SAT procedureis the only one that preventstemporal growth not presentin the true solu-

tion of a systemof p.d.e.'s. Section2 describeshow to apply correctly the intermediate SAT

boundary conditions ill the caseof a linear problem. In Section3 we cover the non-linear
case.

2. The Linear Case

In this section we analyze the effect of imposing the inflow I)oundary conditions in the

conventional way when the discretization algorithm employs the SAT'approach (see ([3])).

The SAT is a penalty type method that was constructed so as to ensure that tile numerical

solution will not include temporal growth which is not of a physical origin. This is achieved

by mimicking the energy estimate of the p.d.e.

Recall that we are considering the following hyperbolic problem (see ([3])):

0u 0u

c0--_-+ _-_x = 0, O<_x<_t,t>_O (2.1)

u(0, t) = g(t) (2.2).

The SAT formulation for the semi-discrete version of (2.1) - (2.2), based on a uniform grid,

is
dv;(t)

-_r-_(vo(t)-g(t)), i = 0,1,...,N; t>0 (2.3)-- i

where V= [Vo, vl,..., VN]T is the semi-discrete approximation that converges to u(xi, t) at

the spatial grid points xi (for stable discretizations); and ¼D is the differential matrix rep-

resentation of the derivative operator (-_). The vector a depends on the differentiation
i

matrix _D, and on the energy norm used in bounding the error. It is determined as described

in ([3]); see the discussion after equation (6) therein.

The demonstration of accuracy deterioration will be shown for the four stage "classical"

RK algorithm, which is one of the most commonly used RK time advancing schemes. For

the analysis to make sense we assume that -the spatiaI discretization is at least fourth order
i

accurate.

The above mentioned four stage RK integrator is implemented as follows:

(2.4)
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V(n+D V (") + -AD[V(") + 2I/'(') + 21/'(2) + V (3)]
6

(2.5)

(2.6)

+[vo¢3)-9(t+ A0]}.
To check for accuracy we substitute for the V (") the exact values u(xi, t), and in particular

v0(") = g(t). Note from eq. (2.4), that on the l)oundary (using the'differential equations

(2.1), (2.2))

= 2 u = g(t) + "-_-9 (i).
o

At
Thus in eq. (2.7), we have for the term },o(')- g (t + T),

(2.8)

(2.9)

Thus V ("+n - V (') is at best 0(At2), and not 0(At s) as expected from the R-K scheme used.

In this linear case, the remedy proposed in the previous paper, ([2]), works here as well.

In particular, eqs. (2.4) -(2.7) take the following form:

= V (") + _DV (n) - _r a [v0(")(t)- g(t)] (2.10)1/'(1)

V(2) = V(n' + _DV(X) - _r -a [v(ol' - g(t) - -_-g'(t)] (2.11)

v(g= y(-) + _DV(2)_ _ _ ,,_2)_ g(_)_ _-g (_)_ g"(t) (2.12)

V "+' - V" + gD IV(n)+ 2V 0) + 21/'(2)+ V TM]

,(.).+-- --TO"
6

+2 [,,(o2) g(t) yg (t)

(2.13)

+ [vo¢3)- g(t) - Atg ' ---ff-At2g"At3__gj,,,]}.

It is readily verified that V ('+1) - V (") = 0(Ats), as required.
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3. The Non-Linear Case

For the sake of simplicity we consider first the scalar conservation law p.d.e.

Ou Of(u)

0--_+ 0---7=0, o<x<l; t>o

u(O,t)=g(t).

(3.1)

(3.2)

In general, for any spatial discretization (whether explicit or implicit) the semi-discrete

form of (3.1) - (3.2) is:

dl__f_z
1 1

-- hOf(V)- h'r -a [Vo- 9(t)]. (3.3)
dt

Using the notation of reference ([3]),

D = -P-'Q (3.4)

where _D is the differentiation matrix representing the differential operator, (-_); com-

posed of the explicit part Q and the inverse of the implicit part P. For a fully explicit spatial

differentiation, P = I + B, where B differs from zero only at the two diagonal corners (see

examples of P and Q in ([4]))..

Tlle vector _, again using the notation of [ ], is given by

"_ ha(uo)gooP-'H-' S (3.5)

= (0,,)_=o' and goo is twice the value of the left upper corner element of HQ.where a(uo) o/

For the definition of tile matrix H see Assumption I in [1]. The parameter r is determined

from stability consideration to be r >_ 1, see ([3]).

Next we demonstrate that writing the classical 4th order RK for eq. (3.3), using the

linear "fix" as in equations (2.10) - (2.13), does not yield the required 4th order accuracy:

v(')= v(")+ re;)- g(t)] (s.5)

|



V(,+,) V (.) + _D[f(V n) + 2f(V (')) + 2f(V (2)) + f(V(3})]

[V(o'_- g(t)- 5-g (tg(t)]+2 ,/]

/" " ' -+2 [v0c'l- g(0 - Tg (t)

(3.8)

At3 m]

Again, when checking accuracy, we take V (") = u(xi, t), and in partiizular Vo(") = g(t); and

also _Df(V") = -_f(u) + 0(At4). With these preliminaries we get immediately from

equation (3.5)

,,(o,)= ,,_ At Ox At O __2 f(t,)o = g(t) + --_--_(U)o = g(t) + g'(t). (3.9)

Note that this is the same as in the linear case, see eq. (2.8). Thus with vo('} = g(t) and

with equation (3.9) we can supply, for the purpose of accuracy checking, the correct values

of v ('} and t,(o1). When we look at eq. (3.6), using the above results, the governing non-linear

p.d.e., and simple Taylor's expansion, we have:

v,,,= d
2 Ox f u 2 . f(u)+0(At 5) =V n At20fOx u+----2 at +O(AtS)

= V(, 0 At. 0 { At OfOu At 2 (02f_ (Ou'_ 2 }2 Ox f(u)+ 2 at, at +--_,Ott 21 _,_) +O(At3)

- 5- _ + 5-0-/ _ + °(At3)

At At

Tu,,] o(At=).= .- T [-u_- +
(3.10)

So finally we have on the boundary

At ,.. At 2 ,..
v(o2) = g(t) + --_g (t) + ---4-9 (t) + O(At3). (3.11)

It follows from (3.11) that the "penalty" term in (3.8) introduces an error of (At3). Since

tim coefficient of (A/3), [f=,(u,)2]o, cannot generally be expressed as a function of g(t) and



its derivatives,it is very difficult to remedythe situation. Thus the "linear procedure" fails

at the third RK stage.

We now proposea methodologyto dealwith the RK integration of non-linearhyperbolic
conservationlaws. We first presentthis procedurein the easeof the classic4th order R-K

scheme. Our starting point is the observation that tile "linear-procedure" yields tile required

accuracy for %00 and t,(o1). The idea is to use at each stage a linear combination of the "linear"

SAT, or penalty, terms used (3.5) and (3.6). The 4th order classic RK stages will thus be:

-- V (") + _Df(V")- 2A-e__ [vo{'}- g(t)] (3.12)V(I)

v _) = vC-)+ Of(VC,)) - _Z ....

V(_ = y("_ + _Df(V_'_) - _ -_[,oc"_- g(t)] - _ _ [_,_o'_- g(t) - _g'(t)] (3.14)

= vt,,) + A-:D[f(V") + 2f(V (1)) + 2f(V (')) +

1

V{-+I) /(V(3))]
(i

(3.15)

-_tt _ [%(")- g(t)]- _t, a L - g(t) - -_g'(t)]

where the free parameters a, fl, 7, 5, e, lt, and u will be chosen so as to maximize the allowable

time step. It is clear from the previous discussion that the system (3.12) - (3.15) maintains

the 4th order accuracy. There remains the question of whether the CFL stability condition

deteriorates, in comparison to the conventional application of R-K, equation (2.4) - (2.7). It

is also clear that the optimal choice of the free parameters a,..., u varies with the spatial

discretizations (i.e. the differentiation matrix D) and boundary closures. One checks that

the absohLte values of the eigenvalues of the amplification matrix resulting from (3.12) -

(3.15) should not exceed unity. We carried out this procedure (using Matematica Software)

in the case of an explicit 4th order algorithm with 3rd order boundary closures. In this case

H = I, and the matrices P and Q can be found in section (9.1) of reference [3]. With the

following values of the free parameters, a =/3 = -e = 1, 5 = 2, tt = 0, u = 3, 3' = -0.37,

the CFL condition becomes A < 2.1. This is the same restriction on the time step, At, as

one has in the linear problem using the "conventional", i.e. less accurate, boundary values

with or without the SAT-term.

4. Conclusions

In summary, we have in (3.12)-(3.15) a 4th order RK scheme, applied to a non-linear

p.d.e., which maintains the overall 4th order accuracy without any decrease in the allowable

time step. The extension to a system of hyperbolic p.d.e.'s is quite straight forward using

the SAT-system approach delineated in ([3]).

6



References

[1]

[2]

[3]

[4]

O. Kreiss and J. Oliger, Comparison of Accurate Methods for the Integration of Hyper-

bolic Problems, TeIlus V2_, (1972),1_p.199-215.

M.H. Carpenter, D. Gottlieb, S. Abarbanel and W.S. Don , The Theoretical Accuracy

of Runge-Kutta Time Discrctizations for tile Initial Boundary Value Problem: A Study

of the Boundary Error. To appear in SIAM Journal on Scientific Computing, ICASE

report 93-83.

M.H. Carpenter, D. Gottlieb, and S. Abarbanel, Time-Stable Boundary Conditions for

Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and Application

to High-Order Compact Schemes, NASA Contractor Report 191436, ICASE Report No.

93-9, March 1993. To appear in JCP.

M.H. Carpenter, D. Gottlieb, and S. Abarbanel, Stable and Accurate Boundary Treat-

ments for Compact, High Order Finite Difference Schemes, Applied Numer. Math., 12

(1993) pp. 55-87.





FormApproved
REPORT DOCUMENTATION PAGE OUeNo. OZO4-Om

Publicreportingburdenforth;scollectionof informationisestimatedtoaverage] hourperresponse,including thetimeforreviewinginstructions,searchingexistingdatasources,
gatheringandmaintainin_thedataneeded,andcompletingandreviewingthecollectionofinformation.Sendcommentsregardingthisburdenestimateor anyotheraspectofthis
collectionofinformation,includingsuggestionsforreducingthisburden,toWashingtonHeadquartersServices,Directoratefor InformationOperationsandReports,]2IS Jefferson
DavisHighway.Suite]204,Arlington,VA 222024302.andtotheOfficeof ManagementandBudget,PaperworkReductionProject(07040188),Washington.DC "20503.

|. AGENCY USE ONLY(Leaveblank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1994 Contractor Report

4. TITLE AND SUBTITLE

ON THE REMOVAL OF BOUNDARY ERRORS CAUSED BY

RUNGE-KUTTA INTEGRATION OF NON-LINEAR PARTIAL

DIFFERENTIAL E(_UATIONS

6. AUTHORIS)

Saul Abarbe.nel

David Gottlieb

Mark H. Carl_enter
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center
Hampton, VA 23681-0001

5. FUNDING NUMBERS

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 94-79

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-194989

ICASE Report No. 94-79

11. SUPPLEMENTARY NOTES

Langley Technicai Monitor: Michael F. Card

Final Report

To be submitted to Journal of Computational Physics

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 64

12b. DISTRIBUTION CODE

13. ABSTRACT (Max;mum 200 words)
It has been previously shown that the temporal integration of hyperbolic partial differential equations may, because

of boundary conditions, lead to deterioration of accuracy of the solution. A procedure for removal of this error

in the linear case has been established previously. In the present paper we consider hyperbolic p.d.e's (linear and

non-linear) whose boundary treatment is done via the SAT-procedure. A methodology is present for recovery of the
full order of accuracy, and has been applied to the case of a 4th order explicit finite difference scheme.

14. SUBJECT TERMS ,
4th order Runge-Kutta, Time-dependent boundary conditions, hyperbolic p.d.e.'s

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

qSN 1540-01-280-5500

_'U.S. GOVERNMENTI_INTING OIF'IF'IC£:1994.4;18-o641/13063

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF THIS PAGE OF ABSTRACT
Unclassified

IS. NUMBER OF PAGES

9

16. PRICE CODE

,, A03
20. LIMITATION

OF ABSTRACT

'Standard Form 298(Rev. 2-89)
PrescribedbyANSIStd.Z39-18
298-102





National Aeronautics and
Space Administration

Langley Research Center
Mail Code 180
Hampton, VA 23681-00001

Ofnckd Bulm

BULK RATE
POSTAGE & FEES PAID

NASA
PermitNo. G_7




